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1 Introduction and Background 
With the increasing availability of massive observational and experimental data sets 
(across a wide variety of scientific disciplines) there is an increasing need to provide 
scientists with efficient computational tools to explore such data in a systematic 
manner. For example, techniques such as classification and clustering are now being 
widely used in astronomy to categorize and organize stellar objects into groups and 
catalogs, which in turn provide the impetus for scientific hypothesis formation and 
discovery (e.g., see Fayyad, Djorgovski and Weir (1996); or Cheeseman and Stutz 
(1996) or Fayyad and Smyth (1999) in a more general context). 

Data-driven exploration of massive spatio-temporal data sets is an area where there 
is particular need of data mining techniques. Scientists are overwhelmed by the vast 
quantities of data which simulations, experiments, and observational instruments can 
produce. Analysis of spatio-temporal data is inherently challenging, yet most current 
research in data mining is focused on algorithms based on more traditional feature- 
vector data representations. 

Scientists are often not particularly interested in raw grid-level data, but rather 
in the phenomena and processes which are “driving” the data. In particular, they 
are often interested in the temporal and spatial evolution of specific “spatially local” 
structures of interest, e.g., birth-death processes for vortices and interfaces in fluid- 
flow simulations and experiments, trajectories of extra-tropical cyclones from sea- 
level pressure data over the Atla.ntic and Pacific oceans, and sunspot shape and 
size evolution over time from daily chromospheric images of the Sun. The ability 
to automatically detect, cluster, and catalog such objects in principle provides an 
important “data reduction front-end” which can convert 4-d data sets (3 spatial and 
1 temporal dimension) on a massive grid to a much more abstract representation 
of local structures and their evolution. In turn, these higher-level representations 
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provide a general framework and basis for further scientific hypothesis generation 
and investigation, e.g., investigating correlations between local phenomena (such as 
storm paths) and global trends (such as temperature changes). 

In this work we focused on detecting and clustering trajectories of individual ob- 
jects in massive spatio-temporal data sets. There are two primary technical problems 
involved. First, the local structures of interest must be detected, characterized, and 
extracted from the mass of overall data. Second, the evolution (in space and/or time) 
of these structures needs to be modeled and characterized in a systematic manner if 
the overall goal of producing a reduced and interpretable description of the data is 
to be met. 

Existing data-mining and statistical tools for clustering and classification are 
largely based on the so-called feature-vector representation of an object. For ex- 
ample, for a stellar object one can measure characteristics such as brightness, shape, 
size, and so forth. Given p such measurements we can think of the pdimensional 
measurement vector as existing in a pdimensional Euclidean space. Notions such as 
distance, similarity, decision boundaries, prototypes, clusters, and so forth, all have 
a natural geometric notion in such a representation. Indeed, it is safe to say that the 
vast majority of classification and clustering techniques which currently exist in da.ta 
analysis are cast in this multivariate framework. 

Dynamic trajectories of objects are difficult to handle with traditional vector- 
based clustering methods (e.g., representing a sequence of (xi, yi), 1 < i < n position 
measurements as a vector of length 2n). The main difficulties are: 

0 different objects have trajectories of different lengths and may evolve at different 
time-scales, making a vector description inappropriate. 

0 object trajectories are inherently smooth as a function of time, information 
which is lost by vectorization. 

0 objects have additional features of interest such as size, (e.g., sunspot size), 
shape, and velocity as well as their 2d or 3d position as a function of time. 
One would like to be able to systematically model the interdependence of the 
object’s spatial evolution and its features. 

Our proposed work involved development of general techniques for (a) extracting 
trajectories of moving objects from large data spatio-temporal data archives, and 
(b) developing techniques for clustering such spatio-temporal trajectories (e.g., as 
in Gaffney and Smyth, 1999). Most of our actual work during the award period 
was devoted to  the detection and tracking problems, specifically the development 
of algorithms and software to extract 2d-dimensional cyclone paths from sea-level 
pressure spatial data records. 

2 Overview of Work Performed 
In this report we summarize what has been done this year for this project. Below we 
describe the main points and give some further details in the following sections. 



0 Section 3: Research into dynamic modelling 

- Generated trajectory-like sequences from AR, MA, and ARMA models 

- Investigated how much data is needed to learn the parameters of these 

- Investigated the feasibility of learning a mixture of these models 

models 

0 Section 4: Experimentation with application to cyclone clustering 

- Obtained an appropriate meteorlogical data set 

- Finished extensive preprocessing of the data for our purposes 

- Chose a bicubic interpolation and gradient descent based method to enable 
offgrid cyclone tracking. 

oped software. 
- Performed some basic cyclone tracking experiments with the newly devel- 

- Developed a simple GUI to enable the visualization of the tracking results. 

0 Section 5: Software development 

- Finished the porting of our previous cyclone tracking software 

- Finished the modifications to enable offgrid tracking 

0 Section 6: Future work 

- Further investigate mixtures of dynamic models, including both AR models 

- Investigate ways in which the tracking of cyclones (or other phenomenon) 

- Obtain another data set in a different application area from cyclone clus- 

as well as Kalman filter models 

can be integrated into their clustering 

tering 

3 Research Into Dynamic Modelling 
We proposed a general framework for clustering trajectories using probabilistic models 
of dynamic systems which allows one to overcome limitations of feature-vector based 
methods. As such we began looking at various types of dynamic models, for example, 
autoregressive (AR), moving average (MA), and the more general ARMA model. 

One of our tasks was to figure out how to simulate direction-focused trajectories 
from these models in terms of parameter settings. Figure 1 shows some simple trajec- 
tories generated from an AR model. These sequences have a loose direction of travel 
instead of randomly moving about. Its this type of behavior that we are trying to 
model from scientific data sets. 

We also looked at learning the parameters of these models given some set of 
generated data from a known model. We investigated exactly how much data one 
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Figure 1: Two different pairs of sequences generated from an AR(2) process. Each 
sequence begins at (0,O). 

needs to accurately learn a good model. Of importance is how difficult it is to learn 
a mixture of AR models, since mixture models are at the core of our trajectory 
clustering technique. We are currently looking deeper into this issue. 

4 Experimentation with Application to Cyclone 
Clustering 

One of the applications of trajectory clustering can be found in the clustering of 
cyclone tracks from meteorological data (e.g., Hodges, 1994; Blender et al., 1997). We 
are currently working with the CCM3 AMIP I1 simulated data set for the 1979/1980 
winter that gives mean sea-level pressure (MSLP) measurements on a 2.5” x 2.5” grid 
over the earth. In order for the data to be usable for our purposes we had to perform 
some extensive preprocessing to filter out long term effects in the measured field. A 
snapshot of the resulting data can be seen in Figure 2. 

In a previous project update we noted that an important aspect of our proposed 
approach of employing dynamic models for cyclone tracking (in this case) is that we 
somehow need to be able to track cyclones in continuous state-space. This means 
that we cannot be confined to the aforementioned grid. As such we must employ 
some kind of interpolation scheme so that we can track cyclones off of the grid. 

Here we focus on using a bicubic interpolation inside of an iterative scheme to 
find our minima using a simple gradient descent. First we scan all of the images (or 
the MSLP data slices over time) and find all the local minima using a simple sliding 
neighborhood method. That is, we declare a “pixel” to be at a local minimum if its 
value is less than all eight of its neighbors. Then we use a simple gradient descent 
with bicubic interpolation to descend to the point “inside” of the pixel that is at an 
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Figure 2: Contour plot showing MSLP in the North Atlantic at a particular date. 



Figure 3: An example offgrid minimum found using gradient descent. We see an 
image of the interpolated MSLP data at one instant in time. The grid lines represent 
the location of the acutal data grid in our data set. The square shows the grid- 
located minimum found using sliding neighborhoods. The ‘x’ shows the approximate 
minimum found using gradient descent with bicubic interpolation. 

approximate minimum. This point then gives us our approximate offgrid center of 
a candidate cyclone. Figure 3 shows an example of an offgrid minimum that was 
found using this method. The image shown has been interpolated so that we can see 
“inside” of each pixel. 

Using the above technique, we processed the data to force all of the grid-based 
minima to lie in continuous space. We then fed this data into our new tracking 
software and observed the results. Figure 4 shows an example of a single trajectory 
that was generated from the above steps. The image shown displays the MSLP data 
at the instant in time when the cyclone is at the far right of its trajectory. A simple 
GUI was developed so that we could visualize the results and determine not only the 
performance of the tracking, but also to get a grasp on the difficulty of the problem 
at hand. 

5 Software Development 
We have finished the process of porting our previously developed MATLAB software 
to our current C++ PC-based platform and, in addition, we have completed the 
necessary modifications to allow tracking to be carried out using offgrid coordinates. 
At this time, much of the basic software development has been finished. Much of the 
future development will be focused on dynamic modelling implementation. 
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Figure 4: A single generated cyclone trajectory. The line in the figure connects the 
'*' symbols along the trajectory that represent the minima that were tracked as part 
of this cyclone. The background image represents the MSLP data at the time the 
cyclone is centered at the far right '*'. 

6 Future Work 
As planned, now that we have finished most of the basic software development, we 
can focus more on the modelling aspect of the project. Our goal is to target the inves- 
tigation of Kalman filter models (e.g. North and Blake, 1998) and their application 
to this project. Since Kalman filters operate in continuous space, our new tracking 
software will complement this task nicely. 

From here we would like to investigate ways in which the tracking can be integrated 
into the clustering framework (e.g., Blender et al. (1997)). That is, if we know which 
cluster an individual belongs to with some probability, then we should be able to more 
accurately track his future movements. In other words, we believe that instead of two 
different problems-tracking and clustering-what we have here is one compound 
problem that can be 'solved in an integrated manner. 
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